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Abstract

Our study proposes a game-theoretic analysis of sandwich attacks on decentralized
exchanges. We account for the uncertainty of state transitions during attackers’
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are driven by a strategic trade-o↵ between transaction fees and the unpredictability
of their profits. Our findings challenge the belief that attackers always maximize slip-
page to their victims. In empirical study, we show that attackers often pursue smaller
attacks instead of making the largest attack. By incorporating a behavioral approach,
we confirm that our model more accurately captures observed attack patterns than
existing models. Our research is not limited to blockchain but can be extended to
other contexts involving probabilistic decision-making, providing insights into other
domains. This broad applicability highlights the value of our model for tackling
complex decisions in uncertain environments across various research domains.
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1. Introduction

In Ethereum networks, block proposers determine both which transactions are
included in a block and their execution order, typically selecting transactions from
the mempool based on factors like transaction fees (gas fees). Users often compete by
o↵ering higher fees to have their transactions processed more quickly. While this fee
competition can seem fair, as it links willingness to pay with transaction speed, it can
lead to manipulation in transaction ordering. This phenomenon, known as Maximal
Extractable Value (MEV), allows block proposers and adversarial users to reorder,
include, or exclude transactions for personal gain, potentially compromising fairness.
MEV encompasses various forms, including arbitrage, liquidation, and sandwich at-
tacks. While arbitrage and liquidation can enhance market e�ciency in decentralized
finance (DeFi), sandwich attacks are more problematic. In such attacks, an entity
manipulates market prices to extract extra profits, adversely a↵ecting victims and
harming market e�ciency.

To address the issue of sandwich attacks, we analyze the behavior of involved
market participants to understand their strategies and impact on market dynamics.
In a sandwich attack, adversaries execute transactions immediately before and after a
victim’s transaction—known as frontrunning and backrunning—to manipulate asset
prices and profit from the price di↵erences. This tactic resembles the frontrunning
strategies of high-frequency traders (HFTs) in traditional markets but is more com-
plex in Ethereum due to the block proposer’s control over transaction ordering. A
critical challenge is the uncertainty of transaction sequences within a block, leading
adversaries to pay higher transaction fees to prioritize their transactions. Users can
mitigate risks by setting slippage tolerance in Automated Market Makers (AMMs)
like Uniswap, limiting how much the price can deviate from the expected value dur-
ing execution. Analyzing these concepts is crucial for a deeper understanding of
sandwich attacks in blockchain networks.

In this research, we present a game-theoretic model to determine the optimal at-
tack volume for adversaries conducting sandwich attacks on decentralized exchanges
(DEXs). Our two-stage approach considers that victims first choose their slippage
tolerance, aware of potential sandwich attacks, and then adversaries observe this
tolerance and strategically select their attack volume to maximize profit. Impor-
tantly, our model incorporates the concept of external slippage—the variability in
attackers’ expected profits due to uncertainty about external transactions within the
same block. The model can be extended to a more general game-theoretic framework
by modifying the scenario as follows. In our model, two players are involved: the
victim and the attacker. The victim initiates communication by sending a message
to the blockchain’s initial state, which the attacker observes before responding with
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a counter-message aimed at generating financial gain. However, the challenge arises
from the presence of other messages within the blockchain that can also trigger state
transitions, complicating the dynamics of the systems. Consequently, the attacker
must make profit-maximizing decisions under the uncertainty that the state may
change from the observed state by the time the decision is executed. Through this
model, contrary to the assertion of Heimbach and Wattenhofer (2022) that attack-
ers exploit maximum slippage, we find that attackers often opt for smaller attack
volumes, balancing profit maximization with risk mitigation. This finding suggests
that optimal attacker strategies are influenced by prevailing market conditions and
the slippage settings chosen by victims.

Our findings highlight external slippage as pivotal in shaping attacker decisions.
Attackers face a trade-o↵: paying higher priority fees increases the likelihood of
earlier transaction execution, reducing profit variability but incurring higher costs;
paying lower fees reduces costs but increases profit variance due to transaction order
uncertainty. Prior studies suggest that attackers often set attack quantities right at
the slippage tolerance boundary. However, our study reveals that attackers may not
consistently follow this strategy. Our model quantifies the probability of a successful
sandwich attack and, supported by empirical evidence, suggests that attackers may
prefer smaller-scale attacks. We validate this model using real blockchain data from
Uniswap V2 and V3 swap transactions in November 2022. The data confirm that at-
tackers do not consistently choose maximum attack volumes, supporting our premise
that they adopt more measured strategies. This real-world validation strengthens the
practical relevance of our findings.

Furthermore, we introduce a behavioral approach, acknowledging that market
participants may not be entirely rational. Literature reveals that crypto investors
are heavily influenced by social factors and public sentiment, often exhibiting irra-
tional, risk-seeking behavior and herding tendencies (Almeida and Gonçalves, 2023).
Given this, we find that actual data align more closely with our model than with
previous models, reinforcing its relevance in capturing complex market behaviors in
cryptocurrency trading.

The structure of this paper is as follows. Section 2 reviews related research to
contextualize our contributions. Section 3 outlines our proposed theoretical model
and the decision-making process for attackers. Section 4 presents the empirical ev-
idence supporting our model. Section 5 describes the mechanism of decentralized
exchanges in detail. Finally, Section 6 summarizes our findings and suggests direc-
tions for future research.

3



2. Related Work

Blockchain technology has significant potential to innovate industries, particu-
larly in reshaping the financial sector through the growth of decentralized finance
(DeFi) ecosystems. Baliker et al. (2023) summarize blockchain applications in Fin-
Tech, while Nelaturu et al. (2022) highlight unresolved performance, security, and
privacy obstacles in blockchain technology for FinTech applications. To address se-
curity concerns, Liu et al. (2022) propose a novel information security strategy using
blockchain and edge computing, and Song et al. (2023) introduce a blockchain-based
FinTech trust evaluation mechanism (BFTEM) to verify user trustworthiness.

MEV is a unique characteristic of cryptocurrency markets arising from ledger
transparency and lack of centralized control. Werner et al. (2022) provide a com-
prehensive overview of DeFi and highlight MEV threats. Foundational work by Qin
et al. (2022) and Daian et al. (2020) quantifies blockchain extractable value. In
public blockchains, transactions are openly processed and publicly available in the
mempool until included in a block, allowing entities controlling transaction order to
exploit this privilege for financial gain. MEV types include arbitrage, liquidation,
and sandwich attacks. While arbitrage and liquidation are generally benign and
enhance market e�ciency—arbitrageurs exploit price discrepancies, and liquidators
quickly resolve insolvent collateral (Perez et al., 2021)—sandwich attacks are more
problematic due to causing market instability.

Sandwich attacks manipulate transaction ordering to profit from price manipula-
tion and have garnered significant attention (Zhou et al., 2021; Heimbach and Wat-
tenhofer, 2022; Züst et al., 2021). These attacks occur on decentralized exchanges
(DEXs) using Automated Market Maker (AMM) models with liquidity pools. Zhou
et al. (2021) formalize the problem, and studies like Ferreira and Parkes (2022); Al-
pos et al. (2023) propose cryptographic methods to improve transaction ordering and
reduce vulnerability. Züst et al. (2021) demonstrate increasing e�ciency of trading
bots in executing sandwich attacks and suggest mitigation strategies like splitting
large transactions.

The work of Heimbach and Wattenhofer (2022) provides valuable insights into
mitigating the sandwich attack problem by considering the optimal decisions of at-
tackers and victims in a game-theoretical framework. This work shows that the
proposed algorithm providing e↵ective slippage tolerance outperforms the constant
auto-slippage by the AMM, Uniswap. Building upon the findings of Heimbach and
Wattenhofer (2022), our study extends the understanding of optimal decision making
for attackers and victims. While this study has advanced our understanding, they
leave unanswered questions about the variance of expected return of sandwich at-
tack. The variance stems from the fact that the order of transaction in a block could
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be di↵erent according to the priority fee of the transaction. The attackers attempt
to acquire the sandwich attack opportunity by front-running and back-running their
victim with higher priority fees to extract MEV (Qin et al., 2022). At this time,
the priority fee is included in the cost to the attacker, and depending on how much
this cost is spent, the profit from the attack varies along with the order of sandwich
attack transactions it is executed in the block. Since the probability of attack success
varies depending on the order of transactions within the block, the distribution of
expected profits from sandwich attacks is determined by the priority fee, and this
study seeks to present a new model that takes this into account.

Canidio and Danos (2024) provides a game-theoretic analysis of front-running at-
tacks within the blockchain ecosystem. The study introduces a novel commit-reveal
protocol designed to prevent front-running attacks while maintaining legitimate fee
competition among users, thereby ensuring that higher fees result in earlier trans-
action processing. By doing so, the proposed model mitigates fee competition from
malicious actors attempting to carry out front-running attacks, ultimately benefiting
honest participants. Although the theoretical framework of this study shares signif-
icant parallels with our work, our model specifically addresses sandwich attacks,
which encompass both front-running and back-running strategies, which can cause
more severe loss to the honest users than front-running attacks. Additionally, the
two-stage game model in Canidio and Danos (2024) provides game-theoretic deci-
sions under a deterministic state, whereas our model focuses on stochastic states,
where the expected state and its transition is governed by probabilities rather than
being deterministic.

Additionally, beyond technical vulnerabilities, the behavior of market participants
plays a crucial role in the dynamics of sandwich attacks. Literature reveals that
cryptocurrency investors often exhibit irrational and risk-seeking behavior, influenced
by social factors and public sentiment. Almeida and Gonçalves (2023) provide a
systematic review showing that the crypto investment landscape is dominated by
investors driven by the pursuit of high profits, leading to intense herding behavior
and market ine�ciency. Notably, crypto investors tend to view themselves as superior
traders compared to non-crypto participants, and sophisticated investors are more
inclined to demand cryptocurrency as a hedge against risks in the real economy
(Colombo and Yarovaya, 2024). According to Hackethal et al. (2022), cryptocurrency
investors frequently shift their portfolios toward even riskier assets after adopting
cryptocurrencies. This irrational behavior can exacerbate the impact of sandwich
attacks, as investors may not take optimal protective measures, making them more
susceptible to exploitation.

Recognizing that attack success probability and expected profits depend on pri-
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ority fees and investor behavior, our study presents a new model that accounts for
these factors. By incorporating both the technical aspects of transaction ordering
and the behavioral tendencies of investors, we aim to provide a more comprehensive
understanding of sandwich attacks and their mitigation.

3. Model

3.1. Problem Definition: Sandwich Attack

The sandwich attack is typically done on the DEX liquidity pool by actual at-
tackers or the predatory trading bots. It aims to attack the traders who want to swap
two tokens in the liquidity pool by adding the front- and back- run transactions to
the trader’s transaction. The basic principles of success of the sandwich attack is to
temporarily manipulate the swap price in the liquidity pool. The front-run trans-
action increase the swap price of the token that the trader want to receive, and the
back-run transaction realize the profit of attackers. For the rest of our model analy-
sis, we will consider the sandwich attack on single liquidity pool consisted of tokens
X and Y with swap transaction fee f .

We start by formulating the sandwich attack as a two-stage game among two
players: Victim (V ) and Attacker (A). The first stage of sandwich attack starts
with V observing the initial state t0 = (x0, y0) of the liquidity pool, where x0 and y0
each denotes the amount of tokens X and Y in the liquidity pool. After observing
t, V sends transaction TV = (�vx , �vy , s) to the mempool, which is the set of pending
transactions to be recorded on the block. TV contains two messages. First message
is that V is willing to exchanges �vx amount of tokens X to �vy amount of tokens
Y . Second is the maximum slippage tolerance s, which determines how much loss
the trader is willing to accept and proceed with the swap. When the transaction TV

is included in the block, smart contract of the liquidity pool runs and activates the
swap if the maximum slippage tolerance condition is satisfied.

The second stage of sandwich attack occurs because mempool is public. When
the first stage game ends, A observes TV in the public mempool, and the second
stage game begins. A creates the front-run transaction T front

A = (�inax , �ay) and back-
run transaction T back

A = (�ay , �
out
ax ) as a countermessage of TV . Then A binds three

transactions TA = (T front
A , TV , T back

A ) and submits it to the mempool with base fee b
and priority fee r. If TA is recorded on the block and run successfully, V and A each
earns payo↵ PV and PA, respectively.

The key point of the two-stage game is that the state t00 when TA is executed
can be di↵erent from t0, the state when TA is sent to the mempool. While A sends
countermessage to gain the profit based on the observed state t0, the actual profit
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can be di↵erent since it is based on t00. On the other hand, V manages the risk of
state di↵erence by setting s. Mathematically, TV will be only exeucted when the
following condition is satisfied:

�̃vy � (1� s)�vy , (1)

where �̃vy denotes the actual amount of tokens Y that V will receive based on the t1.
We can represent the game tree for sandwich attack as in Figure 1. The observed

state when both players make decision is di↵erent from the state when their strategy
is executed and gain profit.

Figure 1: Game tree and corresponding state of the liquidity pool for each stage

Sending a countermessage TV requires two kinds of cost: base fee b > 0 and
priority fee r � 0. While b is exogenous variable, r acts as the auction price. The
higher r gives TV higher probability to be located on the front part of the block. In
Section 3.2, we quantitatively define the e↵ect of r on the position of TV in the block
as the di↵erence between t0 and t00.

3.2. External Slippage

At the point that V submits a swap transaction, TV , to the liquidity pool, he
expects to receive �vy amounts of token Y as follows:

�vy =
y0(1� f)�vx

x0 + (1� f)�vx
(2)
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However, the amounts of tokens in the liquidity pool will change for every swap
transactions. Therefore, the actual states of the liquidity pool when each transaction
is executed will be di↵erent. We will define the states of the liquidity pool just before
when transactions T front

A , TV , and T back
A are executed as t00 = (x0

0, y
0
0), t

0
1 = (x0

1, y
0
1),

and t02 = (x0
2, y

0
2), respectively.

It is important to point out that t00 will be di↵erent from t0, which is the crucial
di↵erence between our work and Heimbach and Wattenhofer (2022).

In Heimbach and Wattenhofer (2022), the authors assumed that TA always oc-
cupies the very front position in the block. From the perspective of the two-stage
game defined in Section 3.1, this assumption can be interpreted as t0 = t00. For A,
this implies that the amount of token Y received after executing TA is deterministic.
Consequently, A can confidently predict whether TV will be successfully executed.
Thus, A’s optimal strategy reduces to choosing between two options: sending the
optimal message TA that satisfies Equation 2 at the boundary, or not sending TA at
all.

However, we argue that A cannot confirm the success of the attack, as it depends
on t00, which is not observable by A at the time of sending a countermessage. It
occurs because of the external slippage. We will define internal slippage and external

slippage, which when added together will equal to the total slippage that the trans-
action of trader will actually face. The sandwich attack of attackers itself causes
the internal slippage to the transaction of trader who would be a victim of sand-
wich attack. On the other hand, external slippage means the change in the state of
liquidity pool that is not expected by the attackers. Even though the attacker who
is willing to do the sandwich attack tries to put its transactions at the front of the
block, we cannot a�rm that it will locate as the first transaction of the newly created
block. Therefore, there exists the possibility of other transactions participating in
the liquidity pool may precede the T front

V . These other transactions a↵ects the state
of the liquidity pool and it becomes the external slippage. As a result, the sum of
the internal and external slippage should be small enough to satisfy 2, which leads
to the execution of TV .

During the overall procedures of sandwich attack, the external slippage will be
only occurred just before the T front

A is executed because the transactions (T front
A , TV , T back

A )
will be bundled together and no other transactions will be able to get in between
them. We will assume that the external slippage will change (x0, y0) to (x0

0, y
0
0),

where x0
0 ⇠ N(x0,

�2

r ) and x0y0 = x0
0y

0
0. �2 denotes the magnitude of external slip-

page. This assumption is plausible in two senses. First, a change in the state of the
liquidity pool can cause the amount of X to increase or decrease for same chance.
x0
0 following the normal distribution well captures the bi-directional change of the
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pool state. Second, as the attacker pays more priority fee r, it becomes more likely
to place its transactions at the front part of the block. It reduces the likelihood of
sandwich attack transactions being preceded by other transactions participating in
the same liquidity pool, which leads to the decrease of the magnitude of external slip-
page. Even though the normal distribution assumption has the risk that the number
of tokens can have negative value, it has significantly small probability because �2

r
will be much smaller than x0 in most cases.

3.3. Optimal strategy

Given the state of the liquidity pool t00 = (x0
0, y

0
0) just before TA are executed, we

can derive the quantities of the number of tokens that each transactions will receive.
When T front

A is executed, A will receive �ay tokens Y as follows:

�ay =
y00(1� f)�inax

x0
0 + (1� f)�inax

(3)

Therefore, (x0
1, y

0
1) becomes x0

1 = x0
0 + �inax and y01 =

x0
0y

0
0

x0
0+(1�f)�inax

. Consequently, when

TV is executed, V will receive �̃vy tokens Y as follows:

�̃vy =

x0
0y

0
0

x0
0+(1�f)�inax

(1� f)�vx

x0
0 + �inax + (1� f)�vx

(4)

(x0
2, y

0
2) becomes x0

2 = x0
1 + �vx and y02 =

x0
1y

0
1

x0
1+(1�f)�vx

. Finally, when T back
A is executed,

A will receive �outax tokens Y as follows:

�outax =
x0
2(1� f)�ay

y02 + (1� f)�ay
(5)

When the every procedures are over, the profit of adversary sandwich attackers
becomes as follows:

PA = �outax � �inax � 2b� 2r (6)

However, TV will not be executed if the total slippage is larger than s. Therefore,
we can write the profit more precisely as follows:

PA =

(
�outax � �inax � 2b� 2r, if �̃vy � (1� s)�vy
�2b� 2r, otherwise

(7)

Since �outax is the random variable a↵ected by x0
0, we will now consider the expected

profit E[Pa|�ainx , r].
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The adversaries aim to maximize its expected profit by controlling �inax and r.
These two parameters that adversaries can control a↵ects the expected profit in the
terms of attack success probability and cost. As they increase �inax , E[�outax ] will increase
since the gave more input to the liquidity pool. On the other hand, the victim will
face more internal slippage and it will make harder to meet the slippage tolerance
condition of TV . Another parameter r directly a↵ects the expected profit since itself
is a cost, and also a↵ects the attack success probability by changing the magnitude
of external slippage.

Considering the e↵ects of �inax and r, we can derive the attack success probability
f(�inax , r) (i.e. probability of slippage tolerance condition is met) as follows:

f(�inax , r) = P

0

@
x0
0y

0
0

x0
0+(1�f)�inax

(1� f)�vx

x0
0 + �inax + (1� f)�vx

� (1� s)
y0(1� f)�vx

x0 + (1� f)�vx

1

A (8)

We show that f(�inax , r) has a closed form solution in Lemma 1.

Lemma 1. If a quadratic equation h(x) = �(1� s)x2� (1� s)(2�inax +(1� f)�vx)x+
x2
0 + (1� f)�vxx0 � �inax(1� s)(�inax + (1� f)�vx) = 0 has two real roots h1 < h2, then

f(�inax , r) = �(h2�x0
�2/r )��(h1�x0

�2/r ), where �(·) is the cumulative distribution function

of standard normal distribution.
3

Proof.

f(�inax , r) = P(h(x0) � 0)

= P(�(1� s)(x0
0 � h1)(x

0
0 � h2) � 0)

= P(h1  x0
0  h0

2) (* 0  s  1)

= �

✓
h2 � x0

�2/r

◆
� �

✓
h1 � x0

�2/r

◆
(9)

Using Lemma 1, we can derive the expected profit of A as follows:

E[PA] =

✓
�

✓
h2 � x0

�2/r

◆
� �

✓
h1 � x0

�2/r

◆◆
(�outax � �inax)� 2b� 2r (10)

3If a distribution other than the normal distribution is assumed for x0
0, the lemma still holds as

long as �(·) represents the cumulative distribution function of x0
0�x0

�2/r .
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In the perspective of attackers, A will act to maximize its expected profit. Specifi-
cally, he will solve the following two variables optimization problem.

max
�inax ,r

E[PA]

s.t. �inax , r � 0
(11)

We can compare the optimal solution �sax derived from Heimbach andWattenhofer
(2022) with the optimal solution (�⇤ax , r

⇤) of Equation 11. �⇤ax will be smaller than
�sax because �sax is based on the belief that optimal adversaries will attack as much
property that just satisfies the slippage tolerance. Since we have pointed out the
existence of external slippage, adversary should maintain enough safety margin or
high level of transaction fee to guarantee high possibility of the attack success.

4. Empirical Study

In this section, we employ both simulated data and actual market data pertaining
to sandwich attacks to examine the ability of our proposed model to accurately repre-
sent real-world scenarios. Through analysis of simulation results, we confirm that the
optimal strategies for attackers, as derived from our model, diverge significantly from
those suggested by existing models Heimbach and Wattenhofer (2022). Additionally,
we have verified that analysis of actual market data yields results consistent with
those from our simulations. From a behavioral economics standpoint, experimental
evidence indicates a higher likelihood of the proposed model accurately reflecting op-
timal decision-making compared to the existing research. Finally, we have explored
the implications of the attacker’s optimal strategies, as identified through both the
proposed and existing models, on the victim’s losses and overall social welfare.

4.1. Data Collection

We analyze the sandwich attacks detected on Uniswap V2 and V3 to comprehend
the practical nature of how these attacks are executed. Initially, we identify sandwich
attacks carried out between block 16,000,000 (Nov 18, 2022) and block 16,010,000
(Nov 20, 2022) employing the detection algorithm proposed in Park et al. (2024). To
streamline our analysis, we exclusively focus on attack cases where WETH (Wrapped
Ether) is among the underlying assets in the pool. Furthermore, we filter the attacks
to include only cases where the attacker’s profit is denominated in WETH, and the
sum of the other assets amounts to zero. As a result, our empirical analysis comprises
of 1463 sandwich attacks, consisting of 4810 swap transactions. To acquire compre-
hensive details for each transaction within our dataset, we leverage the Erigon node
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Figure 2: Example of a sandwich attack detected at the Uniswap V2 BIOS/WETH Pool in block
16009112.

of the Ethereum blockchain. Our access to the Erigon archive node facilitated the
retrieval of substantial information pertaining to the transactions. This encompassed
critical data such as the transaction fee (computed as the product of gas price and
used gas), coinbase transfer (direct transfer of Ethereum to the proposer of a block),
transaction index, and the quantity of underlying assets exchanged within Uniswap
pools.

Table 1: Summary of the sandwich attack dataset

Panel A: Uniswap V2 & V3 Comparison

Uniswap V2 Uniswap V3

# of frontrun transactions 1263 423
# of victim transactions 1089 349
# of backrun transactions 1263 423
Panel B: Descriptive Statistics (in WETH)

Cost Revenue Profit

# of observations 1463 1463 1463
Mean 0.026640 0.028505 0.001865
Median 0.008073 0.008609 0.000101
Standard Deviation 0.085542 0.089568 0.009376
Min 0.001611 0.001612 -0.000626
Max 1.403588 1.464834 0.184897

Moreover, our dataset includes pools from both Uniswap V2 and V3. Conse-
quently, we compute the marginal price for each pool di↵erently, depending on the
respective version of the pool. For Uniswap V2 pools, we denote the amount of each
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token deposited at time t as xt, yt for two tokens X and Y , and Lt denoting the
liquidity of the pool. With the invariant formula xtyt = L2

t , the marginal price of

token Y respect to token X can be calculated as pt = �@xt
@yt

= L2
t

yt
= xt

yt
. To apply this

formula, we collect the token reserves’ amount for Uniswap V2 pools at each block.
However, for Uniswap V3 pools, the marginal price cannot be calculated simply as
the ratio of token reserves between X and Y since the provided liquidity varies based
on the given price interval. Therefore, we additionally obtain SqrtPriceX96 at time
t, where SqrtPriceX96 = 296 ⇥ p

pt. Thus, the marginal price can be computed as
pt = (SqrtPriceX96)2/2192 for Uniswap V3 pools. Table 1 represents the descriptive
statistics of sandwich attack dataset used for our empirical analysis.

To enhance readers’ understanding of the sandwich attack, we provide an illus-
tration of an actual sandwich attack detected at block 16009112 in Figure 2. The
attack was executed at BIOS/WETH pool of Uniswap V2, where the attacker ini-
tially inflated the price of BIOS by buying 3277.214505 BIOS with 0.106264 WETH.
Subsequently, the victim had to purchase 6836.634842 BIOS at an elevated price,
further driving up the price OF BIOS in the pool. Finally, the attacker sold the
3277.214505 BIOS obtained in the frontrun transaction at a higher price, resulting
in an arbitrage revenue of 0.001358 WETH. After deducting the transaction fees of
0.00135 ETH for both the frontrun and backrun transactions, the total profit from
the attack amounted to 0.000008 WETH.

4.2. Simulation Results

We have done numerical analysis of our proposed model framework. For the
simulation, we set parameters s = 0.001, x0 = 1000, y0 = 1000, f = 0.003, �vx =
100, � = 0.01, b = 0 4. Figure 3 shows the surface of expected profit by varying �inax
and r. The red dot is the optimal (�⇤ax , r

⇤) = (0.405, 0.005), while the dashed red line
is the line with �inax = 0.405. In this parameter setting, �sax is 0.524. We can check
that there exists an optimal solution at a point smaller than when we do not account
for the external slippage.

Our study di↵ers from the previous work by Heimbach and Wattenhofer (2022)
in that we consider the impact of the priority fee, r, on the probability of success.
As a result, for the same value of r, the expected profit becomes a convex function
of �inax . This distinction causes the optimal �ax in our study to be smaller compared

4The parameters used in simulation are based on that used in the Heimbach and Wattenhofer
(2022). It is designed to reflect the conditions of a realistic swap pool as closely as possible, and is
also set to show how the optimal solution of the model presented in this study di↵ers from previous
studies.
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Figure 3: Simulation result of the optimal solution of Equation 11

to the optimal �ax found in previous research.
However, �⇤ax is far smaller than the attack amount from the real-world transaction

data. This is a major limitation of our model structure. We assumed that x0
0 will

follow a normal distribution, which has the advantage of fully reflecting changes in
both directions. However, the problem with this assumption is that it inherently
assumes a low probability of attack success. For example, applying the optimal
attack volume derived from Heimbach and Wattenhofer (2022) to the current model
results in only a 50% chance of attack success.

4.3. Empirical Analysis of Sandwich Attacks

To support our theoretical model that the amount of fee that attackers are willing
to pay to the block proposers (or validators) can significantly influence the position of
their transactions within a block, we empirically investigate the relationship between
transaction costs and transaction indices. Accordingly, we compute the correlation
between transaction index and the cost-related variables(gas price, transaction fee,
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and the overall cost=transaction fee + coinbase transfer). Our attack model is based
on the assumption that block proposers determine the transaction order within the
block based on the potential revenue they can receive from each transaction. As
a result, in addition to the absolute value of each cost-related variables, we also
compute the relative rankings of transaction index, gas price and overall cost within
the block in descending order. For instance, if a transaction has a lower gas price
ranking, it indicates a higher gas price compared to other transactions. Using these
data, we begin by calculating the Pearson’s correlation matrix among transaction
ranking, gas price, overall cost, cost ranking, and gas price ranking. As shown in Ta-
ble 2, the correlation matrix reveals a high correlation between the transaction order
and the relative ranking of gas price (0.7912). This suggests that block proposers
accord higher priority to gas price compared to other variables when determining the
sequence of transactions within the block. This behavior of block proposers seems
quite reasonable, given that the actual transaction fee cannot be precisely predicted
in advance, as block proposers face challenges in estimating the exact amount of gas
used for each transaction. Instead, they utilize the relative gas price ranking of the
transactions in the mempool as a criterion for establishing the order of transactions.
Additionally, Figure 4 plots the gas price ranking and transaction order ranking of
5,000 transactions, visually confirming the high correlation between them. It clearly
demonstrates that transactions with a higher gas price compared to others are posi-
tioned earlier in the block. We also provide the Spearman and Kendall’s correlation
between transaction order and the cost-related variables in Table 3. The results
closely align with those in Table 2.

Table 2: Pearson’s Correlation Matrix between transaction order and cost-related variables

tx ranking gas price gas price ranking overall cost cost ranking

tx ranking 1.0 -0.1160 0.7912 -0.0147 0.1603
gas price -0.1160 1.0 -0.1280 -0.1262 -0.0803
gas price ranking 0.7912 -0.1280 1.0 0.0064 0.0576
overall cost -0.0147 0.1262 0.0064 1.0 -0.0533
cost ranking 0.1603 -0.0803 0.0576 -0.0533 1.0

To investigate the practical evidence of our sandwich attack model proposed in
Section 3, we assess whether the attackers attempt to maximize their profit from
the attack by selecting the highest possible input amount (�inax), thereby reaching
the maximum slippage tolerance of the victim’s transaction. However, in order to
correctly compare the slippage tolerance chosen by the victim with the actual slippage
observed through the transaction, we require the historical memory pool data of the
Ethereum blockchain, as the slippage tolerance itself is not recorded in the main
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Figure 4: The transaction order and the gas price ranking of 5,000 transactions.

Table 3: Spearman and Kendall’s Correlation Matrix between transaction order and cost-related
variables

Panel A: Spearman Correlation

tx ranking gas price gas price ranking overall cost cost ranking

tx ranking 1.0 -0.4351 0.6842 -0.1358 0.1464
Panel B: Kendall Correlation

tx ranking gas price gas price ranking overall cost cost ranking

tx ranking 1.0 -0.3978 0.6814 -0.09678 0.1187

blockchain. Nevertheless, due to constraints in accessing historical memory pool
data, which are not stored on the blockchain, our analysis uses Uniswap’s default
maximum slippage thresholds of 0.5% and 5.5% as proxies for these values, rather
than the actual historical pool data. In specific instances, users may opt for the
highest permissible slippage, with Uniswap’s maximum slippage threshold set at
20%. Consequently, in our empirical analysis, we estimated slippage by examining
the transaction volume between the victim and the attacker, employing the most
relevant slippage benchmarks of 0.5%, 5.5%, and 20%.

We introduced a variable termed ”ratio”, representing the proportion of the ac-
tual attack input volume (�inax(actual)) executed by the sandwich attacker relative
to the maximum feasible attack input volume (�inax(feasible)), constrained by the
victim’s maximum slippage allowance. Figure 5 presents a box plot for the ’ratio’
variable in our sandwich attack dataset, clearly indicating that the ratio value for
75% of the total data is below 1. This suggests that attackers do not use the full
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maximum possible attack volume suggested by Heimbach and Wattenhofer (2022)’s
study. However, in approximately 25% of the instances, the ratio exceeds 1, which
may be considered an anomaly resulting from the actual slippage value reported by
the victim being unknown.

Figure 5: A box plot of the ratio of the actual attack input volume (�inax
(actual)) executed by the

sandwich attacker relative to the maximum feasible attack input volume (�inax
(feasible))

Our analysis confirms that the optimal attack volume proposed by our theoretical
model is consistent with actual data. However, attacks aiming to achieve maximum
slippage in a victim’s transaction, as described in existing research (Heimbach and
Wattenhofer (2022)), constitute less than 10% of all documented successful sandwich
attacks. Although there are some inconsistencies between empirical data and our
model, refining the model’s assumptions could lead to a more accurate reflection of
real-world data.

We have examined the function call parts within each transaction on the data
collected in Section 4.1 to collect the slippage information reported by the victims.
Consequently, we have selectively gathered the transaction data from the original
data in Section 4.1 where information on ’amountInMax’ or ’amountOutMin’ is avail-
able. Following this refined extraction method, we obtained a subset of data from the
original dataset, resulting in a total of 148 transactions with slippage information.
As previously indicated, the actual subset data reveal that the victim’s exchange
volumes stay over the maximal slippage threshold depending on the front-running
attacker’s transaction not fully attacking the maximal slippage threshold. Table 4
shows the descriptive statistics of the slippage s submitted by victims and the ratio
between the actual exchange amount �̃vy to the minimum exchange amount (1�s)�vy
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with the maximum slippage threshold. On average, traders submit a slippage rate of
approximately 10 percent, while the actual volume exchanged from the liquidity pool
exceeds the required minimum volume under the submitted slippage by an average of
4.16 percent. In Heimbach and Wattenhofer (2022), the discussion revolved around
the strategy of a sandwich attacker exploiting the total of the maximum slippage
of the victim, thus limiting the victim to exchanging only the minimal amount per-
missible. However, empirical evidence has shown that victims, on average, exchange
amounts that exceed this minimum threshold. The model introduced, which incor-
porates external slippage, o↵ers a better theoretical and experimental explanation
for this discrepancy compared to the prevailing model.

Table 4: Descriptive statistics of the slippage s submitted by victims and the ratio between the
actual exchange amount ˜�vy to the minimum exchange amount (1�s)�vy with the maximal slippage
threshold.

Slippage s Amount ratio �̃vy/(1� s)�vy
Mean 0.1175 1.0416
Median 0.0932 1.0001

Standard Deviation 0.0967 0.0997
Min 0.0037 1.0000
Max 0.3863 1.4715

To demonstrate that real sandwich attackers can achieve greater profits by opti-
mizing their strategies using the proposed model, we present empirical evidence in
Table 4. This table compares the profits realized by attackers from real data with the
potential profits obtained by applying our proposed model. The results show that
the profits achieved using the proposed model are statistically significantly higher
than those observed in the real data, as confirmed by a t-test analysis. By adjust-
ing the cost of the sandwich attack in response to external slippage, the proposed
model yields a higher expected return from the perspective of the Sharpe ratio. Fur-
thermore, the model increases the likelihood that victims receive a more favorable
exchange amount compared to the minimum exchange amount determined by their
submitted slippage.

4.4. Behavioral Approach

In Section 3.3, we delineates the derivation process for ascertaining the optimal
quantity of the token X alongside the priority fee required by an attacker. Utilizing
the developed profit model, we have conceptualized the probabilities of an attacker’s
decision-making process within the ambit of a behavioral model. This includes the
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Table 5: Descriptive statistics of the realized attacker’s profit and the optimal profit based on the
proposed model

Realized profit (in WETH) Optimal profit (in WETH)
Mean 0.00131 0.02028
Median 0.00002 0.01310

Standard Deviation 0.00835 0.02352
Min -0.00063 -0.00099
Max 0.09590 0.13338

Sharpe Ratio 0.15689 0.86383
T-statistic -9.24595
p-value < 0.001

integration of a rationality parameter for the attacker, enhancing the model’s preci-
sion in predicting the attacker’s potential actions, as expounded upon in Kim et al.
(2019). This provides a basis for modeling the realistic behavior of sandwich attack
participants, as well as evaluating the likelihood of the model proposed in this study.

We propose a utility function for the attacker, premised on the expectation of
profit, to estimate the probabilities of the attacker selecting specific actions, �inax and
r. This is formally presented as follows:

Pr(�inax , r) =
exp(�E[Pa|�inax , r])RR

�inax ,r
exp(�E[Pa|�inax , r])

, (12)

where � represents the rationality parameter of the attacker. Notably, � is a non-
negative value that correlates with the attacker’s level of rationality, influencing the
likelihood of selecting the optimal �inax and r. A � value at zero suggests that the at-
tacker’s selections are entirely random, whereas an infinite � indicates a deterministic
approach towards selecting the optimal action.

Table 6 presents a comparative analysis of the log likelihood estimates for our pro-
posed model and a nested model that excludes external slippage, based on UniSwap
data. We evaluated these models across four distinct rationality parameters (� =
1, 0.5, 0.1, 0.01) to determine how the inclusion of external slippage impacts the
model’s alignment with real-world scenarios.

The empirical results clearly show that our proposed model, which incorporates
external slippage, yields higher log likelihood values than the nested model for �
values of 1, 0.5, and 0.1. This improvement is statistically significant, as confirmed
by Likelihood Ratio (LR) tests, which indicate that the proposed model o↵ers a
more realistic framework by capturing the influence of external slippage on attacker
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Table 6: Comparison of log likelihood estimates between proposed model and nested model

Proposed model Nested model

� = 1
Log Likelihood -303.00 -326.51

Average probability 0.196 0.175
LR-test p<0.001

� = 0.5
Log Likelihood -430.09 -441.66

Average probability 0.099 0.093
LR-test p<0.001

� = 0.1
Log Likelihood -700.95 -703.23

Average probability 0.023 0.022
LR-test p<0.05

� = 0.01
Log Likelihood -838.31 -838.54

Average probability 0.011 0.011
LR-test p>0.05

Notes. The LR-test row presents the log likelihood ratio test for each � value, comparing
the proposed model with external slippage and the nested model without external
slippage. The significant p-values indicate that the proposed model has a statistically
higher log likelihood than the nested model, underscoring the practical relevance of
accounting for external slippage.

decision-making. However, at � = 0.01, the di↵erence between models is no longer
statistically significant (Kim et al. (2019); Chung et al. (2020)). This outcome aligns
with the theoretical expectation that, under a low rationality parameter, the dis-
tinction between optimal and sub-optimal choices diminishes, resulting in similar
likelihoods for both models.

These results support our assertion that a model incorporating external slippage
provides a more accurate and realistic estimation of an attacker’s behavior within
DEX environments. Consequently, the proposed model contributes a valuable behav-
ioral framework for understanding sandwich attacks, setting it apart from existing
models that overlook external market factors.
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5. Automated Market Maker (AMMs)

In this study, we focus on sandwich attacks within Decentralized Exchanges
(DEX) and examine the vulnerabilities they expose. This section provides a com-
prehensive overview of the fundamental structure of DEXs, with particular emphasis
on slippage, a crucial factor in our research. Slippage, the di↵erence between the
expected price of a trade and the price at which it is executed, is more pronounced
in DEXs due to the reliance on liquidity pools and the decentralized nature of the
trading process. This makes slippage a critical aspect to consider when analyzing
the mechanics of sandwich attacks.

As highlighted in Mohan (2022), the decentralized finance (DeFi) ecosystem is
rapidly evolving, and the distinctions between Centralized Exchanges (CEX) and
DEX are becoming increasingly important. CEXs typically o↵er faster trades be-
cause they process transactions o↵-chain, which also leads to lower transaction fees.
In contrast, DEXs rely on on-chain transactions, which, while providing greater
transparency, result in slower and more expensive trades due to blockchain fees such
as gas costs. These factors contribute to higher slippage on DEXs, especially during
periods of high volatility or low liquidity.

One of the most significant di↵erences between CEXs and DEXs is the automa-
tion of market-making. CEXs rely on various market makers who supply liquidity,
ensuring that trades can be executed continuously. These market makers actively
manage order books to match buyers and sellers. In contrast, DEXs face technical
challenges in implementing traditional market makers due to the decentralized na-
ture of blockchain technology. To overcome this, DEXs have adopted Automated
Market Makers (AMMs), which are designed to enable liquidity provision without
external market makers. AMMs, through their algorithmic pricing models, allow
users to trade directly with liquidity pools, ensuring decentralized and continuous
trading.

Many DEXs implement AMMs as a core mechanism, where trades are facilitated
without the need for conventional order books. Most AMM-based DEXs use Con-
stant Function Market Makers (CFMMs), which calculate asset prices based solely
on the ratio of assets within a liquidity pool. This fixed pricing mechanism simpli-
fies the trading process by eliminating the need for complex algorithms or external
price oracles, streamlining price discovery and increasing transparency. Uniswap’s
implementation of a constant function AMM has garnered significant attention for
its simplicity and resistance to certain forms of market manipulation. However, this
model is not without its challenges. Issues such as impermanent loss and suboptimal
pricing during extreme market conditions remain areas of concern, highlighting the
need for further research and optimization.
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These distinctions between CEXs and DEXs, especially regarding slippage and
market-making mechanisms, provide essential context for understanding the vul-
nerabilities and trade-o↵s in decentralized markets. Our research emphasizes these
dynamics, particularly the implications of slippage, as a key factor in sandwich at-
tacks, further contributing to the broader discourse on the security and e�ciency of
decentralized exchanges.

Uniswap V2. In Uniswap V2 Adams et al. (2020), we denote the amount of tokens X
and Y reserved in the liquidity pool as x and y respectively, and the overall liquidity
of the pool as L. Assuming that there is no additional liquidity provision, the amount
of tokens in the pool should always follow the CFMM formula as follows:

x · y = L2 (13)

The marginal price of the asset Y with respect to X at time t can be computed as :

pt = �@xt

@yt
=

L2
t

y2t
=

xt

yt
(14)

A token swap within the liquidity pool triggers a state change in the token reserves.
However, the pool must consistently adhere to the invariant formula expressed in
Equation 13. Consequently, when there is an alteration in quantities denoted by �x
and ��y, the resulting amounts (x+�x) and (y ��y) must still satisfy:

(x+�x) · (y ��y) = L2 (15)

Uniswap V3 & Concentrated Liquidity. Uniswap V3 Adams et al. (2021), represented
a significant advancement beyond Uniswap V2 by introducing the concept of concen-
trated liquidity, deviating from the equal distribution of liquidity across the entire
price spectrum seen in Uniswap V2. Formally, liquidity providers in Uniswap V3
possess the capability to concentrate their liquidity within specific price ranges, re-
ferred to as ”ticks,” rather thanuniformly providing liquidity across the entire price
curve. This design allows liquidity providers to strategically target specific price
ranges where they anticipate more favorable trading opportunities or reduced im-
permanent loss. The introduction of concentrated liquidity in Uniswap V3 aims to
enhance capital e�ciency, providing liquidity providers with more nuanced control
over their assets within the trading range. This innovation reflects a sophisticated
approach to liquidity provision, catering to a broader spectrum of user preferences
and risk profiles within the dynamic landscape of DeFi.

As each Uniswap V3 liquidity provider has unique liquidity positions character-
ized by distinct tick ranges, consider a liquidity position with liquidity L, the lower
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price boundary pl, and the upper price boundary pu. In this context, the following
equation should hold:

(x+
L

p
pu

)(y + L
p
pl) = L2 (16)

The description of Uniswap V3 provided here is inherently localized, focusing on trade
dynamics within specific price intervals. Integrating these local dynamics across all
price points results in the formation of an aggregate reserve curve, governing trades
across the entire spectrum of possible prices.

The swap mechanism employed in Uniswap V3 adheres CPMM model, which is
in line with the approach employed in Uniswap V2. Assuming that the current price
is Pc and a trader endeavors to input �y of token Y and receive �x of token X in
return. We know the fact that when swapping within a price range, only Pc changes
and the liquidity L remains unchanged. Then, we can find the post-swap price by
using:

�
p
P =

�y

L
(17)

As we know the input amount �y, the post-swap price Pa is:

p
Pa =

p
Pc +

�y

L
(18)

After calculating the post-swap price, we can calculate the token amounts by using
the amount calculations functions:

x =
L(

p
Pc �

p
Pa)p

Pc

p
Pa

y = L(
p

Pc �
p
Pa)

(19)

6. Conclusion

In this paper, we have explored the multifaceted nature of Maximal Extractable
Value (MEV) in the DeFi ecosystem, with a specific focus on sandwich attacks on
decentralized exchanges (DEXs). Our research contributes a novel game-theoretic
model for determining optimal attack volumes, challenging traditional assumptions
about attacker behavior in decentralized finance.

Our findings challenge the conventional belief that attackers consistently exploit
the maximum slippage allowed by victims. Instead, our model reveals a more nuanced
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strategy, where attackers must weigh transaction fees against the unpredictability of
profits, largely influenced by the concept of external slippage. This balance reflects
the need to consider the variability introduced by the presence of other transactions
within the same block, which can significantly a↵ect the profitability of sandwich
attacks. The introduction of external slippage is a key contribution that helps in
understanding how attackers strategically navigate the uncertain environment of
blockchain state transitions.

Empirical analysis, based on Uniswap liquidity pool transaction data, provides
strong support for our theoretical findings. We confirm that attackers do not always
seek to maximize attack volumes but often opt for smaller-scale attacks to optimize
risk versus reward. The evidence also shows that higher transaction priority fees
correlate with earlier execution within a block, thereby influencing both the suc-
cess probability and variability in profit. This alignment of theory and practical
observation strengthens the robustness of our model.

By incorporating a behavioral perspective, we further demonstrate that market
participants, particularly in the context of cryptocurrencies, often act in ways that
deviate from purely rational behavior. Irrationalities and risk-seeking tendencies
in the behavior of cryptocurrency investors play a critical role in shaping market
dynamics. Our model, which integrates these behavioral elements, o↵ers a more
accurate explanation of real-world sandwich attack scenarios compared to existing
purely rational models.

Overall, this paper not only enhances the theoretical understanding of sandwich
attacks within the MEV framework but also provides practical insights that are rel-
evant to policymakers, blockchain developers, and market participants interested in
the integrity of DeFi systems. Future research could focus on defensive strategies
against sandwich attacks, potentially involving improved transaction sequencing or
cryptographic techniques to mitigate the e↵ects of external slippage. Moreover, ex-
amining the broader impact of these attacks on market e�ciency and the role of
regulatory frameworks could yield valuable insights. Lastly, refining model assump-
tions, such as attack volumes and their influence on market conditions, will help
bridge the gap between theoretical analysis and empirical observations. This work
lays a strong foundation for further exploration of adversarial strategies in decen-
tralized finance and the ongoing evolution of market mechanisms to address inherent
vulnerabilities.
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